Accelerator mass spectrometry analyses of ultra-trace radionuclides in the environment - application to geosciences studies -

> Aya SAKAGUCHI University of Tsukuba

Special Thanks

Rosmarie Eigl Tomoya Nomura Minami Abe Akihisa Nakajima **Peter Steier** Karin Hain Akihiko Yokoyama Robin Golser Tsuyoshi Watanabe Maki Honda Kimikazu Sasa Tomoeki Nakakuki Keiichi Sasaki Yoshio Takahashi Akane Yamakawa Hiroya Yamano Members of Sueki-Lab. Members of Yokoyama-Lab. Members of Watanabe-Lab. Tsukuba AMS group Innovation Plaza Staff R/V Hakuho-maru Crew

Hiroshima University Hiroshima University University of Tsukuba University of Tsukuba University of Vienna University of Vienna Kanazawa University 1.1.1 University of Vienna Hokkaido University Japan Atomic Energy Agency University of Tsukuba Hiroshima University Kanazawa Gakuin University The University of Tokyo National Institute for Environmental Science National Institute for Environmental Science University of Tsukuba Kanazawa University Hokkaido University University of Tsukuba **Hiroshima University**

Measurement of Environmental Radionuclides

Radiation Spectrometry

γ-ray, x-ray Ge Semiconductor

Mass Spectrometry

TIMS

thermofisher.com/order/catalog/product/IQLAAEGAAS FAFYMAMV#/IQLAAEGAASFAFYMAMV

https://www.cameca.jp/product/sims/ims1300-hr3/

Long/Medium Half-life

Detector

Gas Flow Counter Liquid Scintillation Counter

chan

β-ray

Electrodeposition

Short~Long Half-life

Accelerator Mass Spectrometer

Long Half-life Anthropogenic Radionuclides

Classical way, but still higher potential

Applications to Environmental dynamics tracers

* Material cycles in ocean, atmosphere, land

Availability of 'classical' method to modern environmental science

* Behavior and metabolisms of plants and animals

High feasibility usage

* Monitoring

Concentration, distribution and dynamics of nuclides are important around reprocessing plants, Fukushima and Chernobyl

* Development of analytical method

Chemical separations and mass spectrometry of ²³³U, ¹⁸²Hf, ⁷⁹Se, ¹³⁵Cs, Actinides, etc.

* Imaging techniques and state analyses

Existence state, together with concentration analysis, reveals a different aspect from that of stable isotopes.

Usage of medium half-life nuclides

Possible to measure ultra-low levels of environmental nuclides

Environmental Radionuclides

- •Many kinds of nuclides (elements)
 - Specific half-lives
 - •Wide range of concentrations •Chain nuclides
 - •Chain nuclides
 - •Different isotopic compositions
- Introduction histories/amounts are

clear in each system

Non-destructive analysis for analogous research

Nuclear chemistry

* Analog use of short half-life nuclides

Applications of difficult to trace elements (Zr, Hf, Nb, Ta, Ge, Si) in the environment

* Spike production

Essential to mass spectrometry

* Break out from 'Earth' Science

Application to cosmic chemistry/physics

Application to meteorites, SK-Gd samples, etc.

* Unlimited possibility for γ analysis using destructive samples

The initial samples from Fukushima should have also been subjected to 'destructive' γ -ray analysis.

* Avoid extinction of environmental α analysis

Nobody will be able to conduct α analysis

Radiation measurements

Real 'ultra-trace'!

Study of Application of Anthropogenic Radionuclides to Geoscience

Oceanic Circulation Tracers

MRI: http://www.mri-jma.go.jp/Dep/ge/ge_report/2011Artifi_Radio_report/Chapter2.html

Global Fallout - Atmospheric Nuclear Testing

Global Fallout: Nuclear contamination of the entire Earth with anthropogenic radionuclides from atmospheric nuclear testing

MRI, Japan

¹³⁷Cs Measurements in Seawater

LLRL, Kanazawa Univ. Ogoya underground laboratory

Background is less than 1/200 compared with normal detectors. 50-2000 keV 1.8 cpm

Aoyama, Personal comn.

New Oceanic Circulation Tracers: U-236 & U-233

 $^{233,\ 236}U$ have long half-lives (1.592 $\times\,10^7$ y, $\ 2.37 \times\,10^7$ y) cf. ^{137}Cs (30.2 y)

Uranium is a conservative (soluble) element in seawater →^{233,236}U in seawater can be transported with water-mass (Christl et al. 2012; Sakaguchi et al., 2012)

5-liter sample of seawater (subattograms of U) is enough for AMS measurements (Eigl et al. 2016; Hain et al., 2020)

Anthropogenic radionuclides

 \rightarrow Clear origin and age of

introduction to the earth's surface

(Sakaguchi et al., 2009; Winkler et al., 2012, Hain et al., 2020)

Simple concentration method →Available on-board ship (Abe et al., in prep)

Reconstruction of ²³⁶U Ocean Input

The ²³⁶U/²³⁸U ratio in surface seawater can be reconstructed using coral core samples

maximum deposition in 1964 (same variation as fission-produced Cs-137)

Reconstructed ²³⁶U/²³⁸U ratio in Caribbean surface seawater using a coral core

New Concentration Technique for U in Seawater

Amidoxime Adsorbents

- Produced by 'tea-bag'
- radiation graft polymerization
- Concentrate U by a complexation with amidoxime group
- Easy to handle (fabric-like)

Electron beam irradiation

Seko et al., (2004); Tamada et al. (2007); Abe et al. in prep.

'Teabag' adsorbent!

Concentrate U onboard ship

+ 3CO₃²⁻ 2H+

Surface Currents in the Japan sea

- 1. Semi-closed system
- 2. Warm/cold current areas
- 3. Deep water formation
- 4. Shorter circulation time (100-200 y)

Liman, North-Korea currents Counter-clockwise current around Japan basin

Deep water formation zone?

> Tsushima, East-Korea currents Branch of Kuroshio current (North Equatorial current)

Coral Core Samples, Kume

Results

I feel cold, cold, cold, cold COLD!

Yea, we did it!

²³⁶U/²³⁸U in Surface Seawater, Kume

Nomura et al., 2016

²³⁶U Input to the NWP from the PPG

Pacific Proving Ground Nuclear Testing

1952 - Operation Ivy

1954 - Operation Castle

1958 - Operation Hardtack

First hydrogen bomb test

r							(1952)
	Year	Operation	Area	No. of Test	Yield (Mt)		
	1946	Crossroads	Bikini	2	0.05		Maximum explosion yield (1954)
	1948	Sandstone	Eniwetok	3	0.1		
	1952	lvy	Eniwetok	2	10.9	'/	
	1954	Castle	Eniwetok, Bikini	6	48.2	/	
	1956	Redwing	Eniwetok	17	20.82		Second largest explosion
ſ	1958	Hardtack I	Eniwetok, Bikini	35	35.6		vield (1958)
				ANSC	EAR (2000)		

https://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%A4%E3%83%93%E3%83%BC%E4%BD%9C%E6%88%A6#/media/%E3%83%95%E3%82%A4%E3%83%AB:lvyMike2.jpg https://ja.wikipedia.org/wiki/%E3%82%AD%E3%83%A3%E3%83%E3%82%BP%E3%83%AB%E4%BD%9C%E6%88%A6#/media/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Castle_Romeo.jpg https://ja.wikipedia.org/wiki/%E3%83%8F%E3%83%BC%E3%83%89%E3%82%BF%E3%83%83%E3%82%AF%E4%BD%9C%E6%88%A6#/media/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:HardtackOak.JPG

²³⁶U/²³⁸U in Surface Seawater, Kume

²³⁶U/²³⁸U variation coincides well with explosion yield observed at PPG

²³³U/²³⁸U in Surface Seawater, Kume

²³³U/²³⁸U ratios are 2 orders of magnitude smaller than those of ²³⁶U/²³⁸U. However, the basic variations are the same for these ratios. Nomura et al., 2016; Hain et al., 2020

²³³U/²³⁶U in Surface Seawater, Kume

(I) Lower average ratio $(0.31 \pm 0.07) \times 10^{-2}$ compared with the other periods

Hain et al., 2020

Diffusion Simulation (FVM)

Finite Volume Method (FVM)

① simple system ② physical parameters can be retained

Reconstructed ²³⁶U concentration from Kume island was used as input parameter for the very top layer

²³⁶U concentration in each layer at each time

$$C_{j}(t + \delta t)$$

= $C_{j}(t) + dt [\{k_{j+1/2}(C_{j+1}(t) - C_{j}(t)) - k_{j-1/2}(C_{j}(t) - C_{j-1}(t))\}/dz^{2} - \lambda C_{j}(t)]$

 $C_j(t)$: ²³⁶U (atoms/kg) in the j-th FV (j=1–150) at time t

- δt : time-step interval (s) [1/75 year, 16000 steps]
- $K_{j+1/2}$: vertical diffusion coefficient (cm²/s) for turbulent flow between the j- and (j+1)-th FVs (m²/s)
 - λ : decay constant of ²³⁶U (1/s)

Surface layer (150 m) Diffusion coefficient x10

> 150 layers (CR34: 30 layers)

²³⁶U Diffusion Simulation

²³⁶U in the North Atlantic Ocean

²³⁶U in the North Pacific Ocean

- High ²³⁶U in the surface layer due to global-fallout
- Lower ²³⁶U inventory than Atlantic
- ²³⁶U is retained at the surface
- Quite uniform distribution patterns among sampling points

²³⁶U in the West Pacific Ocean

- High ²³⁶U in the sub-surface layer of the mid-North Pacific
- One order of ²³⁶U concentration difference between north and south Pacific→Very low ²³⁶U inventory in the southern South Pacific

Summary 1

- Very low concentrations of ^{233,236}U have been successfully measured using small volume marine samples
- Variations in ²³⁶U/²³⁸U and ²³³U/²³⁸U atomic ratios and their concentrations in Northwest Pacific surface water were reconstructed
- Japan Sea water column ²³⁶U depth profiles could be simulated using constructed values for ²³⁶U in the surface seawater.
- Combining U isotopes with other nuclides, such as ²³⁷Np and ¹³⁵Cs, has further potential to clarify the origin of water masses

Further detailed observations are necessary.

Challenging Themes with AMS-²³⁷Np

Np Chemical Separation Problems

Conventional (classic) method

Evaporate to dryness

Seawater 0.1 mol NH2OH/HCI 0.05 mol hydrazine sulfate Evaporate to dryness ← Fe³⁺ (10 mg/L-seawater) 8M HNO3/0.05 M hydrazine sulfate — 8M HNO3 soln. ppt. Anion exchange resin — 10M HCI — 10 M HCI DOWEX 1x8, NO³ form HI/10M HCI diisopropylethear 1M HCI-0.1M HF (elution) Water Organic Evaporate to dryness 4M CH₃COOH 10%nTOA-xylene Water Organic Anion exchange resin DOWEX 1x8, acetate form 1M HCI-0.1M HF Water Organic Evaporate to dryness 1M HNO₃ Evaporate to dryness adjust to ICP-MS measurement 10 M HCI Anion exchange resin 10 M HCI DOWEX 1x8, Cl⁻ form 4M HCI-1M HF (elution)

Complicated Np purification method

Combination of solvent extractions (2 times) and anion exchange resins (3 times)

Appropriate yield tracer?

²³⁶Np (T_{1/2}=1.54x10⁵ y) able to be a good spike for ²³⁷Np measurements
²³⁶Np spike does not exist

Production of a Np Spike for AMS

Ideal nuclear reaction ²³²Th (⁷Li, 3n) ^{236g}Np High energy Li beam Long half-life Np RIKEN AVF Cyclotron

Interference side reactions

²³²Th (⁷Li, 3n) ^{236m}Np ²³²Th (⁷Li, 2n) ²³⁷Np

Production of a Np Spike for AMS

Simulation of Excitation Function by EMPIRE2

- Production ratio among nuclides are different through the bombing energy
- Larger ^{236g}Np and less ^{236m,237}Np
- No excitation functions exist for these reactions

Preliminarily Results

We were able to confirm the production ^{236m}Np!

cps

To Be Continued!

Th stack target preparation

We plan to distribute the Np spike for use in mass spectrometry (can also be used for ICP-MS)

Look forward to it!

Irradiated sample

Challenging Themes with AMS-¹³⁵Cs

Why AMS ¹³⁵Cs Analysis?

Severe interference with some elements

^{135, 137}Cs/q

^{135, 137}Ba⁺, ⁹⁵Mo⁴⁰Ar⁺, ⁹⁷Mo⁴⁰Ar⁺ etc.

Instruments	¹³⁵ Cs/ ¹³³ Cs			
SF-ICP-MS	10 ⁻⁶ - 10 ⁻⁵	Thermo Element 2XR		
ICP-MS/MS	<10 ⁻⁸	10 ⁻¹⁴ (Theoretical) Agilent 8800		
ICP-CRC-MS	10 ⁻¹⁰	Perkin Elmer DRCII		
TIMS	10 ⁻¹⁰ - 10 ⁻⁹			
RIMS	10 ⁻¹⁰ - 10 ⁻⁸			
AMS	10⁻¹⁵ (Theoretical)			
ILIAMS	6 × 10 ⁻¹²	VERA ILIAMS (3MV)		

B.C. Russell et al. (2015), J. Zheng et al. (2013), V.F. Taylor et al. (2008), T. Lee et al. (1993), W. Bu et al. (2019), L.R. Karam et al. (2002), L. Pibida et al. (2004), J. Eliades et al. (2013)

Ion Laser InterAction Mass Spectrometry- ILIAMS

https://isotopenphysik.univie.ac.at/fileadmin/user_upload/p_isotopenphysik/images_AMS_at_VERA/VERA_20170720.jpg

Chemical Separation Method for ¹³⁵Cs

Zheng et al. (2014; 2016) constructed a brilliant chemical separation method for ICP-QQQ-MS

Summary 2

- New chemical separation methods and improved AMS system enable the measurement of ultra-low level medium half-life radionuclides in the environment
- Clarification of environmental dynamics can be achieved from these studies by combining measurements and analyses of exotic nuclides (not only from the viewpoint of radiological protection)
- Global efforts should be made to develop this study field